Новости высоких технологий

К началу 2000-х годов ученые выделили две ведущие идеи о том, как могла появиться жизнь. Сторонники «РНК-мира» были убеждены, что жизнь началась с самовоспроизводящейся молекулы. В то же время ученые в лагере «сначала метаболизм» считают, что жизнь могла появиться в гидротермальных жерлах на дне океана. И все же на передний план вышла третья идея.

Часть первая: как сделать клетку?

Часть вторая: раскол в рядах ученых

Часть третья: в поисках первого репликатора

Часть четвертая: энергия протонов

Каждое живое существо на Земле состоит из клеток. Каждая клетка — это по сути мягкий шарик, мешочек, с жесткой внешней стенкой, или «мембраной». Задача клетки — удерживать все предметы первой необходимости вместе. Если наружная стенка порвется, внутренности выльются наружу и клетка умрет — так же, как и выпотрошенный человек.

Наружная стенка клетки настолько важна, что некоторые исследователи происхождения жизни даже считают, что она появилась прежде всего. Они считают, что подходы «сперва генетика», который мы обсудили во второй части, и «сперва метаболизм», который мы обсудили в четвертой части, ошибочны. Их альтернатива — «сперва компартментализация» — представлена Пьером Луиджи Луизи из Университета Рома Тре в Риме, Италия.

Все живые предметы состоят из клеток

Идея Луизи проста, и с ней трудно спорить. Каким образом вы собрались создавать рабочую метаболическую систему или самовоспроизводящуюся РНК, каждый из которых опирается на наличие большого количества химических веществ в одном месте, если вы сначала не сделаете контейнер, который удерживает все молекулы вместе.

Если вы с этим согласны, есть только один способ, с которого могла начаться жизнь. Каким-то образом, в жаре и буре ранней Земли, неколько сырых материалов сложились в грубые клетки, или «протоклетки». Осталось только повторить это в лаборатории: создать простую живую клетку.

Идеи Луизи можно проследить аж до Александра Опарина и рассвета науки о происхождении жизни в СССР, которых мы обсудили в первой части. Опарин подчеркнул тот факт, что некоторые химические вещества образуют сгустки — коацерваты — которые могут держать другие вещества внутри. Он предположил, что коацерваты были первыми протоклетками.

Любое жирное или маслянистое вещество будет образовывать сгустки или пленки в воде. Эти химические вещества известны в общем как липиды. Соответственно, гипотезу о том, что с них начала жизнь, назвали «липидным миром».

Но просто сформировать сгустки недостаточно. Они должны быть стабильными, уметь делиться на «дочерние» сгустки и хоть немного контролировать, что проходит внутрь и выходи  наружу — и все это без сложных белков, которые используют современные клетки для этих задач.

Появилась задача собрать такие протоклетки из всего необходимого материала. Несмотря на множество попыток за много лет, Луизи так и не сделал ничего хоть мало-мальски убедительного. И тогда, в 1994 году, он осмелился сделать дерзкое предположение. Он предположил, что первые протоклетки должны были содержать РНК. Более того, эта РНК должна была уметь воспроизводиться внутри протоклетки.

Как-то клетка все же появилась

И вот, его гипотеза стала очень сложной и отошла от чистого подхода «сперва компартментализация». Но у Луизи были веские доводы.

Клетка с внешними стенками, но без внутренностей, мало что может. Возможно, она могла бы делиться на дочерние клетки, но не передавала бы никакой информации о себе потомству. Она могла начать развиваться и становиться более сложной только при наличии некоторых генов.

Вскоре эта идея обрела сильного сторонника в лице Джека Шостака, работу которого на тему «мира РНК» мы изучили в третьей части. Луизи был членом лагеря «сперва компартментализация», Шостак поддерживал «сперва генетику», и много лет они не встречались с глазу на глаз.

Почти вся жизнь одноклеточная

«Мы встречались на собраниях на тему происхождения жизни и затевали эти длинные дискуссии на тему того, что было важнее и что пришло первым», вспоминает Шостак. «Наконец, мы поняли, что у клеток было и то и другое. Мы пришли к общему мнению, что для возникновения жизни важно иметь и компартментализацию, и генетическую систему».

В 2001 году Шостак и Луизи изложили свое видение этого единого подхода. В работе, опубликованной в Natire, они заявили, что должно быть возможность создать простую живую клетку с нуля, разместив реплицирующуюся РНК в обычной капле жира.

Это была радикальная идея. Очень скоро Шостак решил полностью посвятить себя ей. Рассудив, что «мы не можем излагать эту теорию, ничем ее не подкрепив», он решил начать экспериментировать с протоклетками.

Спустя два года Шостак и двое его коллег объявили о большом успехе.

Везикулы — это простые контейнеры, состоящие из липидов

Они экспериментировали с везикулами: сферическими каплями с двумя слоями жирных кислот на внешней стороне и центральным жидким ядром. Пытаясь найти способ ускорить создание везикул, они добавили малые частички глины под названием монтмориллонит. Везикулы начали формироваться в 100 раз быстрее. Поверхность глины выступили катализатором, как некий фермент.

Более того, везикулы могли поглощать как частицы монтморрилонита, так и цепи РНК с поверхности глины. Теперь эти протоклетки уже содержали гены и катализатор, и все из одной простой добавки. Решение добавить монтмориллонит было принято не просто так. За несколько десятилетий много работ предположили, что монтмориллонит и подобные ему глины могли иметь важное значение для происхождения жизни.

Кусок монтмориллонита

Монтмориллонит — это обычная глина. В настоящее время она используется для самых разных дел, из нее даже кошачий наполнитель делают. Образуется она, когда вулканический пепел расщепляется погодой. Поскольку ранняя Земля изобиловала вулканами, кажется вероятным, что на ней было и много монтмориллонита.

Еще в 1986 году химик Джеймс Феррис показал, что монтмориллонит выступает катализатором, который помогает формироваться органическим молекулам. Позже он обнаружил, что глина также ускоряет формирование малых РНК.

И тогда Феррис предположил, что эта невзрачная глина могла быть местом зарождения жизни. Шостак принял эту идею и включил ее в работу, используя монтмориллонит для строительства своих протоклеток. Годом спустя Шостак обнаружил, что его протоклетки могут расти сами по себе.

Чем больше молекул РНК оказывалось в протоклетке, тем выше было давление на наружную стенку. Похоже, желудок протоклетки был забит и она была готова сходить по-большому. Чтобы компенсировать это, протоклетка приняла больше жирных кислот и включила их в стенки, благодаря чему раздулась еще больше и ослабила напряжение.

Что важно, она взяла жирные кислоты из других протоклеток, в которых было меньше РНК, заставив их сократиться. Будто бы протоклетки соперничали и та, у которой было больше РНК, побеждала. Но если протоклетки могут расти, может они и делиться могут? Сможет ли протоклетка Шостака воспроизвести себя?

Клетки делятся на два

Первые эксперименты Шостака показали, что способ деления протоклеток действительно есть. Если сжать ее в небольшом отверстии и вытянуть в трубочку, протоклетка разрывается, формируя «дочерние» протоклетки. Эта идея была неплохой, потому что в ней не участвовал никакой клеточный механизм: просто давление. Но такое решение было не самым лучшим, поскольку протоклетки теряли часть содержимого в этом процессе. Это также означало, что первые клетки могли делиться лишь проталкиваясь через крошечные отверстия.

Существует множество способов заставить везикулы делиться. Например, можно добавить сильный поток воды. Осталось только заставить протоклетки делиться и не терять кишки. В 2009 году Шостак и его студент Тинг Чжу нашли решение. Они сделали немного более сложные протоклетки с наружными стенками в несколько слоев, напоминающие слои лука. Несмотря на такую сложность, эти протоклетки все еще было просто создать.

Когда Чжу кормил их жирными кислотами, протоклетки росли и меняли форму, вытягиваясь в длинные канатоподобные цепочки. После того, как протоклетка становилась достаточно длинной, легкой приложенной силы достаточно, чтобы разбить ее на десятки мелких дочерних протоклеток.

Каждая дочерняя протоклетка содержала РНК родительской протоклетки и не теряла ни одной РНК. Более того, протоклетки могли повторять цикл постоянно, дочерние протоклетки росли и делились. Эту часть проблему, похоже, решили.

В последующих экспериментах Чжу и Шостак нашли еще больше способов заставить протоклетки делиться. Но все равно протоклеткам многого недоставало. Луизи хотел, чтобы протоклетки тиражировали РНК, но РНК просто сидела в них и ничего не делала. Чтобы показать, что его протоклетки могли быть первой жизнью на Земле, Шостаку нужно было заставить РНК внутри них воспроизводиться.

Это было нелегко, поскольку, несмотря на десятилетия попыток — изложенных в третьей части, — никто так и не смог заставить РНК самовоспроизводиться. Эта же проблема загнала Шостака в угол в ходе его первых работ над «миром РНК», и никому другому не удалось ее решить. Поэтому он вернулся и перечитал работу Лесли Оргела, который так долго работал над гипотезой РНК-мира. В этих пыльных бумагах обнаружились ценные подсказки.

Оргел провел много времени с 1970-х по 1980-е, изучая копирование цепей РНК.

Первая клетка должна была вмещать химию жизни

По сути все просто. Возьмите одну цепь РНК и набор свободных нуклеотидов. Затем, используя эти нуклеотиды, соберите вторую цепь РНК, комплементарную первой. Например, цепь РНК «CGC» произведет комплементарную цепь «GCG». Сделав это дважды, вы получите копию оригинальной «CGC», только окольным путем.

Оргел обнаружил, что при определенных обстоятельствах цепи РНК могут копироваться таким образом без какой-либо помощи ферментов. Возможно, именно так первая жизнь создала копии своих генов.

К 1987 году Оргел мог взять цепь РНК длиной в 14 нуклеотидов и создать дополняющие цепи длиной тоже в 14 нуклеотидов. Больше ему сделать не удалось, но этого было достаточно, чтобы заинтриговать Шостака. Его ученица Катажина Адамала попыталась запустить такую реакцию в протоклетках.

Они обнаружили, что для работы такой реакции нужен магний. Но магний уничтожил протоклетки. Впрочем было и простое решение: цитрат, который почти идентичен лимонной кислоте и который присутствует во всех живых клетках.

В исследовании, опубликованном в 2013 году, они добавили цитрат и обнаружили, что тот обволок магний, защищая протоклетки и позволяя шаблону продолжать копироваться. Другими словами, им удалось сделать то, что Луизи предлагал в 1994 году. «Мы запустили химию репликации РНК внутри этих жирно-кислотных везикул», говорит Шостак.

Протоклетки Шостака могут жить в сильном тепле

Всего за десять лет исследований команде Шостака удалось совершить невероятное.

Они создали протоклетки, которые сохраняют свои гены, при этом забирая полезные молекулы снаружи. Эти протоклетки могут расти и делиться и даже соперничать между собой. РНК может воспроизводиться внутри них. С какой стороны ни посмотри, они были похожи на первую жизнь.

Еще они были весьма устойчивыми. В 2008 году группа Шостака обнаружила, что эти протоклетки могут переживать нагрев до 100 градусов по Цельсию, температуры, которая уничтожает большинство современных клеток. Следовательно, эти протоклетки были похожи на первую жизнь, которая должна была переживать сильное тепло от постоянных ударов метеоритов.

«Шостак делает большую работу», говорит Армен Мулкиджанян.

Тем не менее, на первый взгляд, подход Шостака идет вразрез с 40 годами исследований происхождения жизни. Вместо того чтобы озадачиться «сперва воспроизводством» или «сперва компартментализацией», он решил делать оба дела сразу.

Молекулы жизни ведут себя крайне сложно

Это открывает путь к новому подходу к поиску происхождения жизни — единому, объединенному, унифицированному подходу. Он должен охватить все функции первой жизни сразу и одновременно. Эта гипотеза «сперва всё» уже насобирала достаточно свидетельств и может решить все проблемы существующих идей. Подробнее о ней — в следующей части.

Тайна происхождения жизни на Земле. Часть пятая: так как же всё-таки создать клетку?
Илья Хель

Комментирование и размещение ссылок запрещено.

Комментарии закрыты.